# FemtoFrame-INFINITY

Transient Absorption Spectrometer with Femtosecond Diffuse-Reflectance (fs-DRS) Mode



**FemtoFrame-INFINITY** is a UV-VIS-NIR femtosecond Transient-Absorption and **fs-Diffuse-Reflectance** pump-probe spectrometer. With its unique features a broad spectral coverage from UV to NIR and the time window from **femtosecond to ms-time range**, FemtoFrame-INF produces kinetic and spectral data with excellent quality. In addition, FemtoFrame-INF allows you to study iquid, solid and thin film samples in transmission and reflection scheme, as well as materials with diffusion reflection. It comes with advanced data analysis software **FemtoSuite**, capable of various types of data processing including global analysis.

#### **Main Features**

Advanced Feature Replacement of TWO scientific time-resolved instruments:

Femtosecond Transient Absorption

Nanosecond Flash Photolisys

- with a single instrument
- FemtoFrame-INFINITY
- Time window of **20-ns** (Femtosecond Mode)
- Time window of and up to 1 ms (Merge Mode)

Advanced Feature

#### Femtosecond Diffuse-Reflectance Spectroscopy (fs-DRS)

- Dual-Beam configuration for superb signal-to-noise performance
- Two inter-switchable sections with two independent spectrographs / detectors for transparent- and diffuse-reflective samples

## Applications

- Nanoscience
- Materials science
- Photochemistry
- Photophysics
- Photobiology
- Molecular transient absorption spectroscopy

### Key Advantages

• Widest femtosecond-to-millisecond TA

measurement with femtosecond resolution within a single scan,

- Extended spectral ranges of the probing,
- Optimized for both sample types:
  - 1) Transparent (solid/liquid/film;
  - 2) Diffuse-reflective (powders),
- · Designed by experts in spectroscopy,
- Low cost and great research capabilities.

### **Basics of Operation**

The **FemtoFrame-INF** is applied in femtosecond or picosecond pump – probe spectroscopy for sensitive measurements of photo-induced absorbance (optical density) changes. Two CCD linear sensors are placed behind an imaging spectrographs to measure simultaneously the intensities for multiple wave-lengths of the probe pulses, originating from a femtosecond white light (continuum) generator.

For a given time delay between excitation and probe pulses, consecutive exposures with and without excitation are recorded, allowing to calculate the induced absorbance in the whole usable spectral range, obtaining a broad transient spectrum. The exposure conditions are highly variable by the user allowing great flexibility in matching the individual requirements of the sample.

| Specifications                      |                                                                                                                                                                                                        |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Probe Spectral Ranges               | 1040 nr<br>800 nm (Ti-Sa pump)<br>520 nm<br>200 300 400 500 600 700 800 900 1000 1100 1200                                                                                                             |
| Spectral Resolution                 | Spectral resolution s with 150-mm<br>monochromator are:<br>• VIS – 0.2 5 nm<br>• NIR – 0.3 7 nm                                                                                                        |
| Time Window and Step:               | Optical Delay – 0 … 2 0 ns, Step Size (Resolution) 13.3 fs<br>Merge Mode (fs+ms) : 0 1 m s                                                                                                             |
| Temporal Resolution:                | The instrument response function is determined by the customer's laser system and has a typical FWHM of 1.5 times longer than the excitation pulse duration. The intrinsic tempora resolution is 7 fs. |
| Transient Absorption<br>Anisotropy: | Yes                                                                                                                                                                                                    |
| Probe pulse chirp                   | Typical temporal chirp of the probe pulse :<br>500 – 800 nm: 250 fs<br>320 – 750 nm: 750 fs<br>(Values measured for chirp optimized alignment, not applicable to all probe alignment<br>variations).   |
| Dimensions                          | W 960 x L710 x H260 mm                                                                                                                                                                                 |
| Weight                              | 76 kg (approx.)                                                                                                                                                                                        |

## Data Examples

**Basic Organic Chemistry:** 

**Ultrafast Dynamics in DDBBE** 

Transient spectra (left) of DDBBE organic dye and representative kinetic traces of P-25 TiO2 powder sample (right) taken with FemtoFrame-INF. Excitation with 1kHz, 347-nm pulses from the frequency-tripled IBPhotonics' FemtoFLAME-100Duo Laser.



#### Nanomaterials: Carrier Dynamics in TiO2 powder catalyst

